Representations of quadratic forms and their application to Selberg’s zeta functions
نویسندگان
چکیده
منابع مشابه
Applications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملZeta Functions for Equivalence Classes of Binary Quadratic Forms
They are sums of zeta functions for prehomogeneous vector spaces and generalizations of Epstein zeta functions. For the rational numbers and imaginary quadratic fields one can define these functions also for SL(2, ^-equivalence, which for convenience we call 1equivalence. The second function arises in the calculation of the Selberg trace formula for integral operators on L(PSL(2, (!?)\H) where ...
متن کاملconstruction and validation of translation metacognitive strategy questionnaire and its application to translation quality
like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1976
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000017475